Preliminary communication
SYNTHESIS AND REACTIONS OF PHOSPHIDO-BRIDGED
μ_{3}-ALKYLIDYNE CLUSTERS; X-RAY CRYSTALSTRUCTURES
OF THE COMPLEXES $\left[\mathrm{Co}_{2} \mathbf{W}\left(\mu-\mathrm{PE}_{2}\right)_{3}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$,
$\left[\mathrm{Co}_{2} \mathrm{~W}\left\{\mu_{3}-\mathrm{C}(\mathrm{R}) \mathrm{C}(E t) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{O})\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\mathrm{PPh}_{2}\{\mathrm{C}(\mathrm{Et})=\mathrm{CHEt}\}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$,
AND $\left[\mathrm{CoW}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{OH})\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$

PAUL DUNN, JOHN C. JEFFERY * and PAUL SHERWOOD
Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS (Great Britain)
(Received June 4th, 1986)

Summary

Reactions of the phosphido-bridged complexes $\left[\mathrm{Co}_{2} \mathrm{~W}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\right.$ $\left.\left.\mathrm{PR}_{2}\right)(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{R}=\mathrm{Ph}$ or Et$)$ with $\mathrm{PR}_{2} \mathrm{H}(\mathrm{R}=\mathrm{Ph}$ or Et$)$ or $\mathrm{RC} \equiv \mathrm{CR}$ ($\mathrm{R}=\mathrm{Me}$ or Et) are dominated by processes involving facile $\mathrm{P}-\mathrm{C}, \mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bond formation. The X-ray structures of the complexes $\left[\mathrm{Co}_{2} \mathrm{~W}\left(\mu-\mathrm{PEt}_{2}\right)_{3}(\mathrm{CO})_{5}(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right], \quad\left[\mathrm{Co}_{2} \mathrm{~W}\left\{\mu_{3}-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{O})\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\mathrm{PPh}_{2}\{\mathrm{C}(\mathrm{Et})=\mathrm{CHEt}\}\right)(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$, and $\left[\mathrm{CoW}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{OH})\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ have been determined.

Currently there is interest in the possibility that mixed-metal clusters may exhibit novel bi-metallic reactivity patterns [1]. In this context we have recently reported that the coordinatively unsaturated complexes $\left[\mathrm{Fe}_{2} \mathrm{~W}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\right.$ $\left.\left.\mathrm{PR}^{1}{ }_{2}\right)(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{R}^{1}=\mathrm{Ph}\right.$ or Et$)$ react with alkynes $\left(\mathrm{R}^{2} \mathrm{C} \equiv \mathrm{CR}^{2}, \mathrm{R}^{2}=\mathrm{Me}\right.$, Et or $\mathrm{Ph})$ to give the compounds $\left[\mathrm{Fe}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left\{\mu-\mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{R}^{2}\right) \mathrm{CHR}^{2}\right\}(\mu-\right.$ $\left.\mathrm{PR}^{1}{ }_{2}\right)(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$], a process which involves conversion of an alkyne to a μ_{2}-vinylacyl moiety [2]. Herein we report the coupling of alkyne, alkylidyne and carbonyl ligands at a closely related $\mathrm{Co}_{2} \mathrm{~W}$ heterotrimetal centre.

Treatment of I with one equivalent of $\mathrm{PPh}_{2} \mathrm{H}$ gives V [3]. We now find that the related reactions between $\mathrm{PR}_{2} \mathrm{H}(\mathrm{R}=\mathrm{Ph}$ or Et$)$ and the tolylmethylidyne complex II afford good yields ($60-70 \%$) of the terminal $\mathrm{PR}_{2} \mathrm{H}$ compounds III and IV [4], which rearrange $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}\right.$, ca. $\left.1-2 \mathrm{~h}\right)$ to give the phosphido-bridged derivatives VI and VII [5].

The $\mu-\mathrm{PR}_{2}$ groups in $\left[\mathrm{Fe}_{2} \mathrm{~W}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu-\mathrm{PR}_{2}\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{R}=$ Et or Ph) exert an important labilising effect on the carbonyl ligands [2]. A similar effect is evident for the $\mathrm{Co}_{2} \mathrm{~W}$ complexes VI and VII. Thus treatment of VI with one equivalent of $\mathrm{PMe}_{2} \mathrm{Ph}\left(\mathrm{Et}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$ affords VIII (55%), [6], whilst excess

	$\mathrm{R}^{\mathbf{1}}$	L		$\mathrm{R}^{\mathbf{1}}$	R^{2}	L		R
I	Me	CO	v	Me	Ph	co	IX	Ph
II	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me-4}$	co	VI	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me-4}$	Ph	co	X	Et
I I I	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me-4}$	$\mathrm{PPh}_{2} \mathrm{H}$	VII	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me-4}$	Et	CO		
IV	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me-4}$	PEt $2_{2} \mathrm{H}$	VIII	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me-4}$	Ph	$\mathrm{PMe}_{2} \mathrm{Ph}$		

$\mathrm{PPh}_{2} \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$ predominantly (ca. 45%) gives the tris-phosphido bridged complex IX [7], together with free $\mathrm{PPh}_{2}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ and minor ($<10 \%$) byproducts such as XI [8] which contain coordinated $\mathrm{PPh}_{2}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ ligands. The related reaction of VII with excess $\mathrm{PEt}_{2} \mathrm{H}$ gave X (50%). An X-ray study on X [9] (Fig. 1) shows that the edges of the $\mathrm{Co}_{2} \mathrm{~W}$ triangle of metal atoms are asymmetrically bridged by $\mu-\mathrm{PEt}_{2}$ ligands, a situation comparable with that found in the homonuclear trirhodium complex $\left[\mathrm{Rh}_{3}\left(\mu-\mathrm{PPh}_{2}\right)_{3}(\mathrm{CO})_{5}\right][10]$. The unexpected absence of a $\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ group in IX is evidently linked with the formation of $\mathrm{PPh}_{2}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$. Reductive elimination of the $\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ group might involve transfer of two hydrogen atoms to the $\mu_{3}-\mathrm{C}$ carbon to form an alkyl $\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ which migrates to the phosphorus atom of a $\mu-\mathrm{PPh}_{2}$ group.

Fig. 1. The molecular structure of $\left[\mathrm{Co}_{2} \mathrm{~W}\left(\mu-\mathrm{PEt}_{2}\right)_{3}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{X}) . \mathrm{W}-\mathrm{Co}(1) 2.684(1), \mathrm{W}-\mathrm{Co}(2)$ 2.995(1), $\mathrm{Co}(1)-\mathrm{Co}(2) 2.712(1), \mathrm{W}-\mathrm{P}(1) 2.410(2), \mathrm{W}-\mathrm{P}(2) 2.378(1), \mathrm{Co}(1)-\mathrm{P}(1) 2.150(1), \mathrm{Co}(1)-\mathrm{P}(3)$ $2.170(1), \mathrm{Co}(2)-\mathrm{P}(2) 2.189(1), \mathrm{Co}(2)-\mathrm{P}(3) 2.131(1) \AA, \mathrm{Co}(1)-\mathrm{W}-\mathrm{Co}(2) 56.7(1), \mathrm{W}-\mathrm{Co}(1)-\mathrm{Co}(2) 67.4(1)$, $\mathrm{W}-\mathrm{Co}(2)-\mathrm{Co}(1) 55.8(1), \mathrm{W}-\mathrm{P}(1)-\mathrm{Co}(1) 71.9(1), \mathrm{W}-\mathrm{P}(2)-\mathrm{Co}(2) 81.9(1), \mathrm{Co}(1)-\mathrm{P}(3)-\mathrm{Co}(2) 78.2(1)^{\circ}$.

Fig. 2. The molecular structure of $\left[\mathrm{Co}_{2} \mathrm{~W}\left\{\mu_{3}-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{O})\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}{ }^{-}\right.$ $\left.\left(\mathrm{PPh}_{2}\{\mathrm{C}(\mathrm{Et})=\mathrm{CHEt}\}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{XIII}) . \mathrm{W}_{-} \mathrm{Co}(1) 2.809(1), \mathrm{W}-\mathrm{Co}(2) 2.784(1), \mathrm{Co}(1)-\mathrm{Co}(2) 2.668(1)$, $\mathrm{W}-\mathrm{C}(17)$ 2.142(7), $\mathrm{W}-\mathrm{C}(20) 2.197(7), \mathrm{Co}(1)-\mathrm{C}(17) 2.221(7), \mathrm{Co}(1)-\mathrm{C}(18) 2.092(8), \mathrm{Co}(1)-\mathrm{C}(19) 2.100(8)$, $\mathrm{Co}(1)-\mathrm{C}(20) 2.077(7), \mathrm{Co}(2)-\mathrm{C}(17) 2.132(8), \mathrm{Co}(2)-\mathrm{O}(17) 1.935(5), \mathrm{C}(17)-\mathrm{O}(17) 1.321(8) \AA$.

Displacement of the resulting bulky tertiary phosphine $\mathrm{PPh}_{2}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ by excess $\mathrm{PPh}_{2} \mathrm{H}$ could then provide a route to IX. Similar alkyl intermediates may be involved in the formation of $\left[\mathrm{Fe}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{5}(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ from $\left[\mathrm{Fe}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and excess $\mathrm{PPh}_{2} \mathrm{H}$ [11], but here alkyl migration to CO evidently takes precedence over $\mathrm{P}-\mathrm{C}$ bond formation.

Compound VI also reacts $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 12 \mathrm{~h}\right)$ with excess $\mathrm{RC} \equiv \mathrm{CR}(\mathrm{R}=\mathrm{Me}$ or Et) to give the bis-alkyne derivatives XII and XIII [12] in ca. 50% yields. The X-ray structure of the hex-3-yne complex XIII [9] (Fig. 2) reveals that one molecule of the alkyne has been stereospecifically converted to a cis-vinyl group which is attached to phosphorus. A second alkyne has coupled with the $\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ group and a CO ligand affording a novel $\mu_{3}-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{O})$ group which is σ-bound to tungsten via $\mathrm{C}(17)$ and $\mathrm{C}(20)$ with η^{4} and η^{2} attachments to $\mathrm{Co}(1)$ and $\mathrm{Co}(2)$ respectively.

Treatment of XII or XIII with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ leads to immediate cluster fragmentation and good yieids (ca. 65%) of the neutral hydroxy and methoxy

XI

$R^{1} \quad R^{\mathbf{2}}$
XII
$\begin{array}{lll}\text { XIII } & \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 & \mathrm{Me} \\ \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 & \text { Et }\end{array}$

Fig. 3. The molecular structure of $\left[\mathrm{CoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{OH})\right\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{XV})$. W-Co 2.702(1), W-C(1) 2.197(4), W-C(4) 2.134(4), $\mathrm{Co}-\mathrm{C}(1) 2.056(4), \mathrm{Co}-\mathrm{C}(2) 2.132(4), \mathrm{Co}-\mathrm{C}(3)$ $2.135(4), \mathrm{Co}-\mathrm{C}(4) 2.099(4), \mathrm{C}(4)-\mathrm{O}(4) 1.378(5) \AA$.

Co-W dimetal complexes XIV-XVI [13] are obtained. The structure of the hydroxy derivative XV [9] (Fig. 3) shows that the $\mathrm{Co}-\mathrm{W}$ bond is bridged by a μ - $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.$ 4) $\mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{OH})$ group in a manner which resembles that found in homonuclear di-iron "ferrole" complexes such as [$\left.\mathrm{Fe}_{2}\{\mu-\mathrm{C}(\mathrm{OH}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{OH})\}(\mathrm{CO})_{6}\right]$ [14]. In the presence of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(\mathrm{XV})$ reversibly protonates at tungsten affording the cationic hydrido complex XVII [15].

The reactions of VI or VII described above involve facile $\mathrm{P}-\mathrm{C}$ bond formation, a feature not yet observed for closely related $\mathrm{Fe}_{2} \mathrm{~W}$ clusters such as $\left[\mathrm{Fe}_{2} \mathrm{~W}(\mu-\mathrm{H})\left(\mu_{3}-\right.\right.$

	$\mathbf{R}^{\mathbf{1}}$	\mathbf{R}^{2}	$\mathbf{R}^{\mathbf{3}}$
XIV	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me-4}$	Me	H
XV	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me-4}$	Et	H
XVI	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	Et	Me

$\left.\left.\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu-\mathrm{PR}_{2}\right)(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{R}=\mathrm{Et}$ or Ph$)$. This may reflect bimetallic reactivity effects. Alternatively regioselective control of the reaction pathway may be important. Thus, generation of key alkyl or vinyl intermediates in the $\mathrm{Fe}_{2} \mathrm{~W}$ system, in which a heteronuclear $\mathrm{Fe}-\mathrm{W}$ bond is bridged by phosphorus, could occur at the Fe atom remote from phosphorus thereby avoiding $\mathrm{P}-\mathrm{C}$ bond formation.

References and Notes

1 A.J. Carty, P.H. Dixneuf, R. Regragui, and N.J. Taylor, Organometallics, 5 (1986) 1, and ref. therein.
2 J.C. Jeffery and J.G. Lawrence-Smith, J. Chem. Soc., Chem. Commun., (1986) 17.
3 J.C. Jeffery and J.G. Lawrence-Smith, J. Organomet. Chem., 280 (1985) C34.
4 For Compound III, $\nu_{\max }(\mathrm{CO})$ at $2047 \mathrm{~m}, 2000 \mathrm{~s}, 1985 \mathrm{~s}, 1910 \mathrm{wbr}$, and $1851 \mathrm{wbr} \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): ${ }^{1} \mathrm{H}, \delta 5.57 \mathrm{ppm}\left(\mathrm{d}, \mathrm{PPh}_{2} \mathrm{H}, \mathrm{J}(\mathrm{PH}) 357 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}-\left({ }^{1} \mathrm{H}\right\}, \delta 30.1 \mathrm{ppm}\left(\mathrm{s}, \mathrm{PPh}_{2} \mathrm{H}\right)$.
5 For Compound VI, $\nu_{\max }(\mathrm{CO})$ at $2040 \mathrm{~m}, 2014 \mathrm{~s}, 1984 \mathrm{~s}, 1958 \mathrm{w}$, and $1875 \mathrm{wbr} \mathrm{cm}^{-1}$ (methylcyclohexane). NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): ${ }^{1} \mathrm{H}, \delta-13.92 \mathrm{ppm}(\mathrm{d}, \mu-\mathrm{H}, J(\mathrm{PH}) 23, J(\mathrm{WH}) 35 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta$ $232.9 \mathrm{ppm}\left(\mathrm{br}, \mathrm{s}, \mu-\mathrm{PPh}_{2}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 241.2 \mathrm{ppm}\left(\mathrm{d}, \mu_{3}-\mathrm{C}, J(\mathrm{PC}) 25 \mathrm{~Hz}\right)$.
6 For Compound VIII, $\nu_{\max }(\mathrm{CO})$ at $2011 \mathrm{~s}, 1966 \mathrm{~s}, 1940 \mathrm{~m}, 1935 \mathrm{sh}$, and $1878 \mathrm{wbr} \mathrm{cm}^{-1}$ (methylcyclohexane). NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): ${ }^{1} \mathrm{H}, \delta-14.61 \mathrm{ppm}(\mathrm{dd}, \mu-\mathrm{H}, J(\mathrm{PH}) 27,27, J(\mathrm{WH}) 47 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 218.1(\mathrm{br}, \mathrm{s}, \mu-\mathrm{P})$, and $12.6 \mathrm{ppm}\left(\mathrm{br}, \mathrm{s}, \mathrm{PMe}_{2} \mathrm{Ph}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 235.4 \mathrm{ppm}\left(\mathrm{s}, \mu_{3}-\mathrm{C}\right)$.
7 For Compound IX, $\nu_{\max }(\mathrm{CO})$ at $2011 \mathrm{~m}, 1975 \mathrm{~s}, 1967 \mathrm{~s}, 1916 \mathrm{~m}$, and $1864 \mathrm{w} \mathrm{cm}^{-1}$ (methylcyclohexane). NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ at $20^{\circ} \mathrm{C}, \delta 289.4\left(\mathrm{br}, \mathrm{s}, \mathrm{Co}_{2}(\mu-\mathrm{P})\right.$), and $155.5 \mathrm{ppm}(\mathrm{br}, \mathrm{s}$, $\operatorname{CoW}(\mu-\mathrm{P})$); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ at $-40^{\circ} \mathrm{C}, \delta 289.5\left(\mathrm{br}, \mathrm{s}, \mathrm{Co}_{2}(\mu-\mathrm{P})\right.$), and $166.3,143.8 \mathrm{ppm}$ (br, $2 \times \mathrm{s}$, $\operatorname{Cow}(\mu-\mathrm{P})$).
8 For Compound XI, $\nu_{\max }(\mathrm{CO})$ at $1979 \mathrm{w}, 1930 \mathrm{~s}, 1905 \mathrm{sh}$, and $1850 \mathrm{~m} \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta-11.94\left(\mathrm{dd}, \mu-\mathrm{H}, J(\mathrm{PH}) 32,46 \mathrm{~Hz}\right.$), and $4.09 \mathrm{ppm}\left(\mathrm{d}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, J(\mathrm{PH}) 11\right.$ Hz); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 170.5(\mathrm{~d}, \mu-\mathrm{P}, J(\mathrm{PP}) 73 \mathrm{~Hz})$, and $67.9 \mathrm{ppm}\left(\mathrm{d}, \mathrm{PPh}_{2}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right), J(\mathrm{PP}) 73\right.$ Hz). The structure of XI has been confirmed by an X-ray study which will be reported at a later date in a full paper.
9 Crystal data. For X: $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{Co}_{2} \mathrm{O}_{5} \mathrm{P}_{3} \mathrm{~W}, \mathrm{M}=774.1$, monoclinic, space group $P 2_{1} / n, a \operatorname{9.698(2),b}$ $28.332(6), c 10.682(4) \AA, \beta 76.72(2)^{\circ}, U 2857(1) \AA^{3}, Z=4, D_{\mathrm{x}} 1.80 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1520$, $\mu\left(\mathrm{Mo}-K_{a}\right) 54.46 \mathrm{~cm}^{-1}$. Current $R=0.030\left(R_{w}=0.032\right)$ for 4441 absorption corrected intensities ($22^{\circ} \mathrm{C}, \omega-2 \theta$ scans, $2 \theta \leqslant 50^{\circ}, I \geqslant 2.5 \sigma(I)$). For XIII: $\mathrm{C}_{43} \mathrm{H}_{43} \mathrm{Co}_{2} \mathrm{O}_{6} \mathrm{PW}, M=988.5$, monoclinic, space group $P 2_{1} / a$ (non-standard setting of $P 2_{1} / c$), $a 18.54(1), b 9.572(5), c$ 22.81(2) \AA, β $97.95(6)^{\circ}, U 4010(5) \AA^{3}, Z=4, D_{\mathrm{x}} 1.64 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1968, \mu\left(\mathrm{Mo}-K_{\alpha}\right) 38.25 \mathrm{~cm}^{-1}$. Current $R=0.040\left(R_{\mathrm{w}}=0.039\right)$ for 4614 absorption corrected intensities $\left(20^{\circ} \mathrm{C}\right.$, ω-scans, $2 \theta \leqslant 50^{\circ}, I \geqslant$ $2.5 a(J))$. For $\mathrm{XV}: \mathrm{C}_{24} \mathrm{H}_{23} \mathrm{CoO}_{5} \mathrm{~W}, M=634.2$, triclinic, space group $P \overline{1}, a \operatorname{~} .616(2), b 9.610(2), c$ 13.747(3) $\AA, \propto 89.31(2), \beta 95.41(2), \gamma 87.36(2)^{\circ}, U 1131.8(4) \AA^{3}, \quad Z=2, D_{\mathrm{x}} 1.86 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=616, \mu\left(\mathrm{Mo}-K_{a}\right) 59.51 \mathrm{~cm}^{-1}$. Current $R=0.026\left(R_{w}=0.026\right)$ for 3780 absorption corrected intensities $\left(20^{\circ} \mathrm{C}, \omega-2 \theta\right.$ scans, $\left.2 \theta \leqslant 50^{\circ}, I \geqslant 2.5 \sigma(I)\right)$. Nicolet $\mathrm{P} 2_{1}$ or P3 diffractometers, Mo- K_{α} X-radiation ($\bar{\lambda} 0.71069 \AA$). The atomic coordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (Great Britain). Any request should be accompanied by the full literature citation for this communication.
10 R.B. English, R.J. Haines, and N.D.C.T. Steen, J. Organomet. Chem., 209 (1981) C34.
11 J.C. Jeffery and J.G. Lawrence-Smith, J. Chem. Soc., Chem. Commm., (1985) 275.
12 For Compound XIII, $\nu_{\max }(\mathrm{CO})$ at $2021 \mathrm{~s}, 1970 \mathrm{~m}, 1937 \mathrm{w}$, and $1760 \mathrm{~m} \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta 6.12 \mathrm{ppm}(\mathrm{dt}, \mathrm{CEt}=\mathrm{CHEt}, J(\mathrm{PH}) 22, J(\mathrm{HH}) 7 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 66.5 \mathrm{ppm}(\mathrm{s}$, $\mathrm{PPh}_{2} \mathrm{R}$); ${ }^{13} \mathrm{C}-\left({ }^{1} \mathrm{H}\right\}, \delta 243.5(\mathrm{~s}, \mu-\mathrm{CO}, J(\mathrm{WC}) 74 \mathrm{~Hz}$), $227.4(\mathrm{~s}, \mathrm{WCO}, J(\mathrm{WC}) 140 \mathrm{~Hz}), 212.9,209.5$, $202.3(3 \times \mathrm{s}, \mathrm{CoCO}), 190.0(\mathrm{~s}, \mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) C(\mathrm{O}), J(\mathrm{WC}) 54 \mathrm{~Hz}), 157.9,150.1,132.9(3 \times \mathrm{s}$, $C(\mathrm{R}) C(\mathrm{Et}) C(\mathrm{Et}) \mathrm{C}(\mathrm{O})$), $151.0(\mathrm{~d}, C(\mathrm{Et})=\mathrm{CHEt}, J(\mathrm{PC}) 20 \mathrm{~Hz})$, and $112.6 \mathrm{ppm}(\mathrm{s}, \mathrm{C}(\mathrm{Et})=C \mathrm{HEt})$.
13 For Compound XV, $\nu_{\max }(\mathrm{CO})$ at $2016 \mathrm{~s}, 1956 \mathrm{~m}$, and $1891 \mathrm{~m} \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}$, $\left.\delta 4.84 \mathrm{ppm}(\mathrm{br}, \mathrm{s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}\right\}, \delta 228.9(\mathrm{~s}, \mathrm{WCO}, J(\mathrm{WC}) 144 \mathrm{~Hz}), 224.6$ (s, WCO$), 205.4$ (s, $\left.\mathrm{Co}(\mathrm{CO})_{2}\right), 177.3(\mathrm{~s}, \mathrm{COH})$, and $149.5,145.6,137.5 \mathrm{ppm}(3 \times \mathrm{s}, C(\mathrm{R}) C(\mathrm{Et}) C(\mathrm{Et}))$.
14 S. Aimc, L. Milonc, E. Sappa, A. Tiripicchio, and A.M.M. Longredi, J. Chem. Soc., Dalton Trans., (1979) 1664.

15 For Compound XVII, $\nu_{\max }(\mathrm{CO})$ at $2079 \mathrm{~s}, 2061 \mathrm{~m}$, and $2027 \mathrm{~s} \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: ${ }^{1} \mathrm{H}$, $\delta-3.85(\mathrm{~s}, \mathrm{WH})$, and $7.65 \mathrm{ppm}(\mathrm{br}, \mathrm{s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 199.5,198.7\left(2 \times \mathrm{s}, \mathrm{Co}(\mathrm{CO})_{2}\right), 196.4,195.1$ $\left(2 \times \mathrm{s}, \mathrm{W}(\mathrm{CO})_{2}\right), 178.3(\mathrm{~s}, \mathrm{COH})$, and $144.9,141.8,133.3 \mathrm{ppm}(3 \times \mathrm{s}, C(\mathrm{R}) C(\mathrm{Et}) C(\mathrm{Et}))$.

